首页 > 手游频道 >  > 

二维傅立叶变换 二维傅立叶变换计算

二维实序列的快速傅里叶变换(FFT)

在地球物理数据处理中,经常遇到处理二维实数据的情况。例如在勘探中,对面波勘探数据作频散分析解释时,要将时间-空间域的信息转换为频率-波数域频谱;在重磁异常的滤波或转换中,要将空间域的异常f(x,y)转换为波数域F(ω,υ)等。这些分析都需要进行二维的傅里叶变换(FFT)。

二维傅立叶变换 二维傅立叶变换计算二维傅立叶变换 二维傅立叶变换计算


二维傅立叶变换 二维傅立叶变换计算


根据傅里叶变换的定义,对于连续二维函数f(x,y),其傅里叶变换对为

地球物理数据处理基础

对于离散的二维序列fjk(j=0,1,…,M-1;k=0,1,…,N-1),其傅里叶变换为

地球物理数据处理基础

1.二维复序列的FFT算法

对于M条测线,每条测线N个测点,构成复序列yjk(j=0,1,…,M-1;k=0,1,…,N-1),根据离散傅里叶公式(8-41),其傅里叶变换为

地球物理数据处理基础

于是,可以分两步套用一维复FFT完成二维复FFT的计算。

(1)沿测线方向计算

对于j=0,1,…,M-1逐测线套用一维复FFT,执行式(8-43)。定义复数组 则算法为

1)对于j=0,1,…,M-1,作2)~7);

2)将yjk输入A1(k),即A1(k)=yjk(k=0,1,…,N-1);

3)计算Wr,存入W(r),即

4)q=1,2,…,p(p=log2N),若q为偶数执行6),否则执行5);

5)k=0,1,2,…,(2p-q-1)和n=0,1,2,…,(2q-1-1)循环,作

A2(k2q+n)=A1(k2q-1+n)+A1(k2q-1+n+2p-1)

A2(k2q+n+2q-1)=[A1(k2q-1+n)-A1(k2q-1+n+2p-1)]·W(k2q-1)

至k,n循环结束;

6)k=0,1,2,…,(2p-q-1)和n=0,1,2,…,(2q-1-1)循环,作

A1(k2q+n)=A2(k2q-1+n)+A2(k2q-1+n+2p-1)

A1(k2q+n+2q-1)=[A2(k2q-1+n)-A2(k2q-1+n+2p-1)]·W(k2q-1)

至k,n循环结束;

7)q循环结束,若p为偶数,将A1(n)输入到Yjn,否则将A2(n)输入到Yjn(n=0,1,…,N-1);

8)j循环结束,得到Yjn(j=0,1,…,M-1;n=0,1,…,N-1)。

(2)垂直测线方向计算

对于n=0,1,…,N-1逐一套用一维复FFT,执行式(8-44)。即

1)对于n=0,1,…,N-1,作2)~7);

2)将Yjn输入A1(j),即A1(j)=Yjn(j=0,1,…,M-1);

3)计算Wr存入W(r),即

4)q=1,2,…,p(p=log2M),若q为偶数执行6),否则执行5);

5)j=0,1,2,…,(2p-q-1)和m=0,1,2,…,(2q-1-1)循环,作

A2(j2q+m)=A1(j2q-1+m)+A1(j2q-1+m+2p-1)

A2(j2q+m+2q-1)=[A1(j2q-1+m)-A1(j2q-1+m+2p-1)]·W(j2q-1)

至j,m循环结束;

6)j=0,1,2,…,(2p-q-1)和m=0,1,2,…,(2q-1-1)循环,作

A1(j2q+m)=A2(j2q-1+m)+A2(j2q-1+m+2p-1)

A1(j2q+m+2q-1)=[A2(j2q-1+m)-A2(j2q-1+m+2p-1)]·W(j2q-1)

至j,m循环结束;

7)q循环结束,若p为偶数,将A1(m)输入到Ymn,否则将A2(m)输入到Ymn(m=0,1,…,M-1);

8)n循环结束,得到二维复序列的傅氏变换Ymn(m=0,1,…,M-1;n=0,1,…,N-1),

所求得的Ymn是复数值,可以写为

Ymn=Rmn+iImn (m=0,1,…,M-1;n=0,1,…,N-1)

其中,Rmn,Imn的值也是已知的。

2.二维实序列的FFT算法

对于二维的实序列,我们把其看作是虚部为零的复序列,套用上述的二维复序列FFT方法来求其频谱算法上也是可行的,但势必会增加大量的无功运算。因此,有必要研究二维实序列FFT的实用算法,同一维实序列FFT的实现思路一样,同样把二维实序列按一定的规律构造成二维复序列,调用二维复序列FFT,然后通过分离和加工得到原实序列的频谱。

例如采样区域有2 M条测线,每条测线有N个点,并且M,N都是2的整数幂,需要计算实样本序列xjk(j=0,1,2,…,2 M-1;k=0,1,2,…,N-1)的傅氏变换:

地球物理数据处理基础

类似于一维实序列FFT的思想,直接建立下面的二维实序列FFT算法:

(1)将一个二维实序列按偶、奇线号分为两个二维子实序列,分别作为实部和虚部组合为一个二维复序列。即令

地球物理数据处理基础

(2)调用二维复FFT过程,求出yjk的二维傅氏变换Ymn的复数值:

地球物理数据处理基础

式中:Rmn,Imn是Ymn的实部和虚部。

(3)利用Rmn,Imn换算Xmn的值。

前两步容易实现,下面分析第(3)步的实现。

记hjk,gjk的傅氏变换为Hmn,Gmn。根据傅里叶变换的定义,我们导出Xmn与Hmn,Gmn的关系式:

地球物理数据处理基础

式中,Hmn,Gmn为复数,我们用上标r和i表示其实部和虚部,将上式右端实部、虚部分离

地球物理数据处理基础

其中:

地球物理数据处理基础

下面的任务是将Hmn,Gmn各分量与通过二维复FFT求出的Rmn,Imn值联系起来。为此先给出奇、偶分解性质和类似于一维情况的三个二维傅氏变换性质:

(1)奇偶分解性

任何一个正负对称区间定义的函数,均可地分解为如下偶(n)、奇(odd)函数之和:

地球物理数据处理基础

(2)周期性

地球物理数据处理基础

(3)复共轭性

地球物理数据处理基础

现在我们来建立Rmn,Imn与Hmn,Gmn的关系。对Ymn作奇偶分解:

地球物理数据处理基础

根据线性性质

地球物理数据处理基础

对照式(8-54)和式(8-55),得

地球物理数据处理基础

由于hjk,gjk是实函数,根据复共轭性质,上面两式对应的奇偶函数相等。即

地球物理数据处理基础

再由奇偶分解性和周期性,得

地球物理数据处理基础

将式(8-57)代入式(8-50),得

地球物理数据处理基础

再利用Hmn,Gmn周期性及复共轭性,可以得到m=M/2+1,…,M-1;n=0,1,…,N-1的傅氏变换,即

地球物理数据处理基础

将式(8-50)中M,N改为M-m,N-n,并将上式代入,得

地球物理数据处理基础

由式(8-58)、式(8-59)和式(8-61)即可得到原始序列xjk(j=0,1,…,2M-1;n=0,1,…,N-1)在m=0,1,…,M-1;n=0,1,…,N-1区间的傅氏变换Xmn。

具体二维实序列的FFT算法如下:

(1)令hjk=x2j,k,gjk=x2j+1,k,形成

yjk=hjk+igjk (j=0,1,…,2 M-1;n=0,1,…,N-1)

(2)调用二维复序列FFT过程,即从两个方向先后调用一维复FFT算法式(8-43)和式(8-44),求得yjk的二维傅氏变换Ymn的复数值:

Ymn=Rmn+iImn (m=0,1,…,M-1;n=0,1,…,N-1)

(3)用下列公式由Rmn,Imn的值换算Xmn的值:

地球物理数据处理基础 地球物理数据处理基础

二维离散傅里叶变换实验原理

您好,您是想问二维离散傅里叶变换实验原理是什么吗?二维离散傅里叶变换实验原理是将二维离散信号分解为一系列正弦和余弦函数的叠加。二维离散傅里叶变换实验通过将二维离散信号分解为一系列正弦和余弦函数的叠加,然后对这些频率和幅度的分析,可以得到信号的频谱信息,从而实现信号的滤波和频域处理,所以?二维离散傅里叶变换实验原理是将二维离散信号分解为一系列正弦和余弦函数的叠加。

二维傅里叶变换滤波/降噪

这一篇文章中说明了用"二维卷积"的方法进行滤波/降噪( 二维卷积滤波 )。本文主要介绍另一种滤波的方法:在二维傅里叶变换后的" 频振谱 "中,用" 滤波器 "进行滤波,并对比这两种滤波方法的优劣。

滤波器没那么复杂,就是一个函数式而已,只不过这个函数式有一些特别的功能。本文选用的是" 巴特沃斯滤波器 ";图像的噪声还是" 高斯噪声 "和" 椒盐噪声 "。巴特沃斯滤波器的函数式为:

其中 是截止频率(高于这个频率值,就被滤掉了), 是阶次, 是" 中心化频振图( 中心化参考这里 ) "中各点" 距中心点的距离 "。非常简单的一个函数。而且注意到: 说明这就是在频域内的一个函数,所以它的用法就是直接和" F(u,v) F频域参看这里 "做" 矩阵点乘 "即可达到滤波~

下面我们就实一下,对一个原始图像做一下低通滤波看看(把图像" 变模糊 ",因为一些信号被滤掉了),对应的Matlab程序如下:

效果如下,图1是原始图像,图2是低通滤波后图像(记得ifft2回到原始xy空间):

利用这篇文章中 同样的噪声 (高斯随机噪声、椒盐噪声),看看用频域滤波效果如何。这里我就设定截止频率 ,阶次 进行" 巴特沃斯低通滤波 ",加噪声后图像如下:

二维傅里叶变换后频域做低通滤波,效果说明:

,再补充一个" 加噪声-fft2-滤波-ifft2 "的完整流程的Matlab程序:

本文用到的" zxc.jpg "原图像, 在这里 。

5、二维离散傅里叶变换

令 表示一幅大小为 像素的数字图像,其中 。

其二维离散傅里叶变换(DFT)为

离散傅里叶反变换(IDFT)为

令 和 分别表示 的实部和虚部, 则傅里叶谱定义为

变换的相角定义为

极坐标下表示复函数 为

功率谱定义为幅度的平方

如果 是实函数, 则其傅里叶变换关于远点共轭对称

其傅里叶谱也关于原点对称

DTF 和 IDTF 的周期性

变换居中

使用傅里叶变换滤波时,需要对输入数据进行零填充。语法为

P , Q 为函数结果大小。

什么是傅里叶变换?

傅里叶变换的意义和理解:

一、意义:

从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类。

正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。

二、理解:

傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。

傅里叶变换的相关说明:

1、图像经过二维傅里叶变换后,其变换系数矩阵表明:

若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅里叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅里叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。

2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。

以上内容参考:

二维傅里叶变换频振图中心化

在利用二维傅里叶变换生成的" 频振图 "(频率-振幅)进行滤波时,正变换之后要多加一步作,方便后面滤波的处理的!这一步就是:中心化。

原来的频振图是散乱分布的,做了中心化后,图像的中心是" 频率和振幅最小 "的地方,越远离中心点," 频率和振幅越大 "。Matlab中实现中心化非常简单,一条命令搞定:

下面三张图是原始图、非中心化频振图、中心化频振图:

后面的频域滤波处理,都是针对"中心化"的图像进行的。

补充" 手写与自带 "的中心化程序:

二维傅立叶变换的可分离性意义

二维傅立叶变换的可分离性意义如下:

根据二维离散傅里叶变换的可分离性,在计算二维离散傅里叶变换时,可先对图像像素矩阵的所有列分别进行列变换,然后再对变换结果的所有行分别进行行变换,这样就可以利用一维离散傅里叶变换算法串行计算二维离散傅里叶变换,这在某种程度上就简化了计算的过程。

傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有别的。

所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度 对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的。

所以我们用冲激函数表示 已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。

版权声明:本文内容由互联网用户自发贡献。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com,本站将立刻删除。

上一篇
ff14org ff1460职业改动

下一篇