首页 > 网络推广 >  > 

三角函数求周期的三种方法(收藏)

三角函数如何求周期?

您好,大致有以下三种方法求得:

三角函数求周期的三种方法(收藏)三角函数求周期的三种方法(收藏)


三角函数求周期的三种方法(收藏)


1、根据周期性函数的定义求三角函数的周期

2、根据公式求周期

3、把三角函数表达式化为一角一函数的形式,再利用公式求周期

拓展资料:

正弦定理

正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。

怎么求三角函数的周期

三角函数都有周期,每一种三角函数的最小正周期,并用T表示, 要牢记:

正弦函数sinx和余弦函数cosx的最小周期,T=2π,正切函数tanx和余切函数cotx的最小正周期 T=π.

遇到x前的系数不是”1“时,要用x前的系数去除最小正周期.

例如,sin2x的最小正周期T=2π/2=π;

sin(x/2)的最小正周期T=2π/(1/2)=4π;

cos(4x), T=2π/4=π/2;

tan3x, T=π/3.

xotx/2, T==π/(1/2)=2π.

三角函数求周期怎么求

我们知道三角函数的图像是有循环周期的,完成一次振动所需要的时间,称为振动的周期。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。那么如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。 扩展资料 三角函数的图像

三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数,初中阶段常见的三角函数包括正弦函数、余弦函数和正切函数。三角函数的图像是在坐标轴上无限延伸而有规律循环的图像,并且都是对称的。

正弦函数(y=sinx)的图像对称轴为:x=kπ+π/2(k∈Z),对称中心为:(kπ,0)(k∈Z)

余弦函数(y=cosx)的图像对称轴为:x=kπ(k∈Z),对称中心为:(kπ+π/2,0)(k∈Z)

正切函数(y=tanx)的图像无对称轴,对称中心为:kπ/2+π/2,0)(k∈Z)

三角函数求周期怎么求

我们知道三角函数的图像是有循环周期的,完成一次振动所需要的时间,称为振动的周期。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的`(基本)周期。那么如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。

三角函数的周期通式表达式为:正弦:y=Asin(ωx+t);余弦:y=Acos(ωx+t);正切:y=Atan(ωx+t)。在ω>0的条件下:A表示三角函数的振幅;三角函数的周期T=2π/ω;三角函数的频率f=1/T。因此只要知道ω的值,就可以解决三角函数求周期的问题。在解题时首先要对题目给出的函数式进行化简和以及整合,才能准确求出ω的数值。

三角函数的周期公式总结

三角函数的的周期是三角函数的重要性质,下面整理了三角函数周期公式和求周期的方法,希望能帮助到大家。

三角函数的周期公式

三角函数的周期T=2π/ω。

完成一次振动所需要的时间,称为振动的周期。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。

在计算机中,完成一个循环所需要的时间;或访问一次存储器所需要的时间,亦称为周期。周期函数的实质:两个自变量值整体的等于周期的倍数时,两个自变量值整体的函数值相等

求三角函数的周期,若函数式比较简单,可利用定义或周期公式直接求解,若函数式比较复杂,则需要把函数式变形后再利用定义或周期公式求解。

三角函数最小正周期

如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。

(1)y=Asin(ωx+φ)+h或y=Acos(ωx+φ)+h最小正周期T=2π/ω。

(2)y=Acot(ωx+φ)+h或y=Atan(ωx+φ)+h最小正周期T=π/ω。

(3)y=|sinωx|或y=|cosωx|的最小正周期T=π/|ω|。

(4)y=|tanωx|或y=|cotωx|的最小正周期T=π/|ω|。

三角函数的周期性怎么求 公式是什么

三角函数的周期性是数学中常考到的一个知识点,下面是周期性的计算方法及公式,供大家查阅参考,希望可以帮助到大家的复习。

三角函数的周期性

三角函数的周期T=2π/ω。

完成一次振动所需要的时间,称为振动的周期。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。

在计算机中,完成一个循环所需要的时间;或访问一次存储器所需要的时间,亦称为周期 。周期函数的实质:两个自变量值整体的等于周期的倍数时,两个自变量值整体的函数值相等。如:f(x+6) =f(x-2)则函数周期为T=8。

三角函数的周期通式的表达式

正弦三角函数的通式:y=Asin(wx+t);余弦三角函数的通式:y=Acos(wx+t);

正切三角函数的通式:y=Atan(wx+t);余切三角函数的通式:y=Actg(wx+t)。

在w>0的条件下:A:表示三角函数的振幅;三角函数的周期T=2π/ω;三角函数的频率f=1/T:

wx+t表示三角函数的相位;t表示三角函数的初相位。

版权声明:本文内容由互联网用户自发贡献。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com,本站将立刻删除。