24v电池保护板电路图 24v7串锂电池保护板接线图
- 网络推广
- 2025-03-15 19:27
- 1
锂电池保护板的电路图与工作原理
电路图如下:
24v电池保护板电路图 24v7串锂电池保护板接线图
24v电池保护板电路图 24v7串锂电池保护板接线图
工作原理:
当电池电压在2.5V至4.3V之间时,DW01的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01的第1脚、第3脚电压将分别加到8205A的第54脚,8205A内的两个电子开关因其G极接到来自DW01的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电池的负极与保护板的P-端相当于直接连通,保护板有电压输出。
扩展资料主要功能:过充保护功能,过放保护功能,短路保护功能,过流保护功能,过温保护功能,均衡保护功能。
接口定义:该板的充电口与放电口相互,两者共正极,B-为连接电池的负极,C-为充电口的负极;P-为放电口的负极;B-、P-、C-焊盘均是过孔式,焊盘孔直径均为3mm;电池各充电检测接口以DC针座形式输出。
参数说明:工作电流和过流保护电流值的配置,单位:A(5/8,8/15,10/20,12/25,15/30,20/40,25/35,30/50,35/60,50/80,80/100),特殊过流值可以按客户要求定制.
参考资料来源:百度百科 锂电池保护板
锂电池保护板原理图详细分析
锂电池保护板原理:
锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。
锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。
普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制 MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。
在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。
1,过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平 变为低电平时VDD-VSS间电压。
2,过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平 变为高电平时VDD-VSS间电压。
3,过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平 变为低电平时VDD- VSS间电压。
4,过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平 变为高电平时 VDD-VSS间电压 。
5,过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平 变为低电平时VM-VSS间电压。
6,过电流2检出电压:在通常状态下,VM从OV起以1ms以上4ms以下的速度升到 DO端由高电平变为低电平时VM-VSS间电压。
7,负载短路检出电压:在通常状态下,VM以OV起以1μS以上50μS以下的速度升至DO端由高电平变为低电平时VM-VSS间电压。
8,充电器检出电压:在过放电状态下,VM以OV逐渐下降至DO由低电平变为变为高电平时VM-VSS间电压。
9,通常工作时消耗电流:在通常状态下,流以VDD端子的电流(IDD)即为通常工作时消耗电流。
10,过放电消耗电流:在放电状态下,流经VDD端子的电流(IDD)即为过流放电消耗电流。
扩展资料:
1,正常状态
在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。此状态下保护电路的消耗电流为μA级,通常小于7μA。
2,过充电保护
锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。
电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。
在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。
而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。在控制IC检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。
3、短路保护
电池在对负载放电过程中,若回路电流大到使U>0.9V(该值由控制IC决定,不同的IC有不同的值)时,控制IC则判断为负载短路,其“DO”脚将迅速由高电压转变为零电压,使V1由导通转为关断,从而切断放电回路,起到短路保护作用。
短路保护的延时时间极短,通常小于7微秒。其工作原理与过电流保护类似,只是判断方法不同,保护延时时间也不一样。
除了控制IC外,电路中还有一个重要元件,就是MOSFET,它在电路中起着开关的作用,由于它直接串接在电池与外部负载之间,因此它的导通阻抗对电池的性能有影响。
当选用的MOSFET较好时,其导通阻抗很小,电池包的内阻就小,带载能力也强,在放电时其消耗的电能也少。
4,过电流保护
由于锂离子电池的化学特性,电池生产厂家规定了其放电电流不能超过2C(C=电池容量/小时),当电池超过2C电流放电时,将会导致电池的性损坏或出现安全问题。
电池在对负载正常放电过程中,放电电流在经过串联的2个MOSFET时,由于MOSFET的导通阻抗,会在其两端产生一个电压,该电压值U=I*RDS*2,RDS为单个MOSFET导通阻抗。
控制IC上的“V-”脚对该电压值进行检测,若负载因某种原因导致异常,使回路电流增大,当回路电流大到使U>0.1V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压。
使V1由导通转为关断,从而切断了放电回路,使回路中电流为零,起到过电流保护作用。在控制IC检测到过电流发生至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常为13毫秒左右,以避免因干扰而造成误判断。
在上述控制过程中可知,其过电流检测值大小不仅取决于控制IC的控制值,还取决于MOSFET的导通阻抗,当MOSFET导通阻抗越大时,对同样的控制IC,其过电流保护值越小。
5,过放电保护
电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的性损坏。
在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。
而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电池进行充电。由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。
在控制IC检测到电池电压低于2.3V至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常设为100毫秒左右,以避免因干扰而造成误判。
参考资料来源:
24v7串锂电池保护板如何接好这8根细线。
保护板是肯定不能用的,不能充电时限压怎么,而且串联并联起来用,要考虑的地方是不同电池的均一性不一样,有一块电池一点,另外的几块就发挥不了作用。你又不可能去买原装的电池,而外面的普通电池之间就算是一个厂做的同一批次的电池性能也相很大,所以你的设计电路上可行,但实际上这样的做法不可行
保护板需要激活,把充电器插上就激活了
锂电池保护板电路图
拆解一个锂电池保护板均衡电路!并画出电路图一起研究研究
这个保护IC的过放电压是可选的,也有过放保护电压是3V的。把你的要求跟供应商讲,他会满足你的。
点淘宝找“锂电池生产商”店铺的就可以帮就解决!
R3与R4不同电池会不同。
求7.4V锂电池保护板电路图
7.4V锂电池保护板电路图:
如果是单节电池,则选用符合技术要求的单节保护即可,这类保护板在市面上常见,价格便宜,如果是两节或两节以上电池串联以上,则选用两节或两节以上电池串联保护板,或每节电池加个保护板。如果客户要求改变过流保护或短路保护值,有两种方法:1增加保护电路,用LM317,LM393,和电阻电容组成过流保护电路即可,好处是过流值在一定范围内改变电阻大小可以改变,缺点是电路麻烦,占用空间大。
“锂电池”,是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。12年锂金属电池最早由Gilbert N. Lewis提出并研究。20世纪70年代时,M. S. Whittingham提出并开始研究锂离子电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。随着科学技术的发展,现在锂电池已经成为了主流。
7串24v分口保护板如何接线?黑线B-红线P-白线CH-,请问充电和放电的正负极怎么接请高手指点!
可能是charge,CH-充电负极,B-电池总负极,P-是输出负极,红色线应该是总正极,输出正极充电正极电池正极公共正极。
输出负极可能同充电负极共用,不同电池负极。
查清楚线路标记,不搞错,不能短路就可以了。
版权声明:本文内容由互联网用户自发贡献。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com,本站将立刻删除。
下一篇