初三数学难题压轴题(初三数学难题压轴题几何)
- 游戏前瞻
- 2025-01-17 09:00
- 1
中考数学必做的36道压轴题有哪些
中考考试马上就要开始了,我就为大家整理一下中考数学必做的36道压轴题有哪些。
初三数学难题压轴题(初三数学难题压轴题几何)
初三数学难题压轴题(初三数学难题压轴题几何)
第1题 夯实双基“步步高”,强化条件是“路标”
第2题 “弓形问题”再相逢,“殊途同归”快突破
第3题 “模式识别”记心头,看似“并列”实“递进”
第4题 “准线”“焦点”频现身,“居高临下”明“结构”
第5题 莫为“浮云”遮望眼,“洞幽察微”探指向
中考数学压轴题做题技巧
构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。对于中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
线段、角的计算与证明问题
中考的解答题一般是分两到三部分的。部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。 对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
动态几何
从历年中考来看,动态问题经常作为压轴题目出现,得分率也是的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
以上就是我为大家整理的中考数学必做的36道压轴题有哪些,希望能帮助到大家,更多中考信息请继续关注本站!
初中数学几何压轴题?
初二下册数学几何压轴题(难)
如图直角梯形ABCD中AD⊥CDAB=16cmAD=6cmDC=20cm动点P、Q分别从点A、C同时出发点P以3cm/s的速度向点B移动一直到达B点为止点Q以2cm/s的速度向点D移动一直到达D点为止P、Q两点出发后
(1)经过几秒可得到四边形PBCQ的面积为33cm??
(2)是否存在经过几秒可得四边形PBCQ是平行四边形若存在求出经过几秒若不存在请说明理由
(3)经过几秒可得点P与Q间的距离等于10cm
中考数学中几何压轴题主要有哪些
关于复习方法,这里给你一些思路:1、章节复习,不管是那门学科都分为大的章节和小的课时,一般当讲完一个章节的所有课时就会把整个章节串起来在系统的讲一遍,作为复习,我们同样可以这么做,因为既然是一个章节的知识,所有的课时之前一定有联系,因此我们可以找出它们的共同之处,采用联系记忆法把这些零碎的知识通过线串起来,更方便我们记忆。2、轮番复习,虽然我们学习的科目不止一项,但是有些学生就喜欢单一的复习,例如语文不好,就一直在复习语文上下功夫,其他科目一概不问,其实这是个不好的习惯,当人在长时间重复的做某一件事的时候,难免会出现疲劳,进而产生倦怠,达不到预期的效果,因此我们做复习的时候不要单一复习一门科目,应该使它们轮番上阵,看语文看烦了,就换换数学,在烦了就换换英语,这样可以把单调的复习变为一件有趣的事情,从而提高复习效果
初三数学几何压轴题
解:(1)∵抛物线y=-16x2+bx+c过点A(0,4)和C(8,0),∴c=4-16×64+8b+c=0,解得b=56c=4.故所求b,c的值分别为56,4;(2)∵∠AOP=∠PEB=90°,∠OAP=∠EPB=90°-∠APO,∴△AOP∽△PEB且相似比为AOPE=APPB=2,∵AO=4,∴PE=2,OE=OP+PE=t+2,又∵DE=OA=4,∴点D的座标为(t+2,4),∴点D落在抛物线上时,有-16(t+2)2+56(t+2)+4=4,解得t=3或t=-2,∵t>0,∴t=3.故当t为3时,点D落在抛物线上;(3)存在t,能够使得以A、B、D为顶点的三角形与△AOP相似,理由如下:①当0<t<8时,如图1.若△POA∽△ADB,则PO:AD=AO:BD,即t:(t+2)=4:(4-12t),整理,得t2+16=0,∴t无解;若△POA∽△BDA,同理,解得t=-2±25(负值舍去);②当t>8时,如图3.若△POA∽△ADB,则PO:AD=AO:BD,即t:(t+2)=4:(12t-4),解得t=8±45(负值舍去);若△POA∽△BDA,同理,解得t无解;综上可知,当t=-2+25或8+45时,以A、B、D为顶点的三角形与△AOP相似;(4)如图2.∵A(0,4),C(8,0),∴AC的解析式为y=-12x+4.设BP的中点为N,由P(t,0),B(t+2,t2),可得N(t+1,t4),AP=16+t2.过点N作FN∥AC交y轴于点F,过点F作FH⊥AC于点H,设直线FN的解析式为y=-12x+m,将N(t+1,t4)代入,可得-12(t+1)+m=t4,即m=3t4+12.由△AFH∽△ACO,可得AFAC=FHCO,∵AF=4-m,∴4-m45=FH8,∴FH=2×4-m5,当以PB为直径的圆与直线AC相切时,FH=12BP=14AP,2×4-m5=1416+t2,将m=3t4+12代入,整理得:31t2-336t+704=0,解得:t=8,t=8831.
中考数学练习几何压轴题买什么资料好
五三 必备
初二数学几何压轴题 怎样学好初二几何
学好几何无非做好以下几点想学好几何,一定要注意以下几点:1、多做题,在起步初期,多见一些题,对一些模型有初步认识。 2、多总结,尽量在老师的帮助下能够总结出一些模型的主要辅助线做法和解题方法。 3、多应用,多用模型解决问题,不要没有方法的撞大运,要根据图形特点思考解法。 4、多完善,不断做题总会有新的知识添加到已有的模型体系中来,不断壮大自己的知识树。 5、多思考,对于任何一道题都有可能存在不止一种方法,每种方法涉及到的模型不尽相同,要能够通过一题多解发现模型之间的相互关系,增强自己对模型的理解深度。 从长远的角度来说,中考几何压轴的考察趋势越来越倾向于竞赛化的趋势,而考察重点则是以三大变化为主题的综合题目。如今三大变换的思想也在不断的渗透在初二几何的题目中来,平移、旋转、轴对称这些技巧也会慢慢被我们所熟识。然而仅仅熟悉并不够,我们还要结合模型把他们灵活掌握并能够与用到实际的题目中去,这样才能使我们做几何题目的能力有所提高。 初二这一年是模型大爆炸得时期,上学期的全等三角形的模型,下学期的四边形模型以及很多学校在初二暑就会开设的圆的知识,很多都是需要同学们运用模型思想解决的问题。这些知识点不仅多,而且十分重要,可以说初中几何部分的重点全部集中在初二这一年,故而打好基础,勤加练习,多做总结是我们不得不去完成的任务。
初中数学几何压轴题,就那种探究类型题目,一道大题好几个图的那种,怎么做啊,一点思路也没有
一般压轴题都分为三小题,前面两小题肯定很简单的,后面一题有能力者可以做,实在做不来也没办法,这么多压轴题,谁知道会考哪一题呢,所以,前面的基础题一般都不能丢分,这样才可以拿到高分,建议你去做一下《培优提高》,《教与学》,里面的题目都很经典,考试的时候往往会有相似的
怎样解好中考数学压轴题
解中考数学压轴题秘诀(一)
数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题:是先给定直角座标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的座标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的座标,而求点的座标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。
(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。
在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
解中考数学压轴题秘诀(二)
具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。
1、以座标系为桥梁,运用数形结合思想:
纵观最近几年各地的中考压轴题,绝大部分都是与座标系有关的,其特点是通过建立点与数即座标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、以直线或抛物线知识为载体,运用函数与方程思想:
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、利用条件或结论的多变性,运用分类讨论的思想:
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
4、综合多个知识点,运用等价转换思想:
任何一个数学问题的解......
初中数学有没有什么好的关于压轴题教辅 我已经做了挑战压轴题系列了,但总感觉几何证明方面没有底。有
初中几何辅助线秘籍 一本书 还不错
谁能提供几道很难的初三数学压轴题,满意再追加50分
在平面直角坐标系中,点B在直线y=-2x上,过点B作x轴的垂线,垂足为A,AB=10,若抛物线y=-1/6x^2+bx+c过点O、A两点问题补充:
(1)求该抛物线的解析式
(2)若点A与点C关于直线y=-2x对称,判断点C是否在该抛物线上,并说明理由
(3)在(2)的抛物线上是否存在点Q(除A点外),使得△OBQ是直角三角形?若存在。求出点Q的坐标;若不存在,请说明理由。
如图,已知△ABC中,AB=4,BC=5,AC=6,把线段AB沿射线BC方向平移至PQ,直线PQ与直线AC交于点E,又联结BQ与直线AC交于点D。
(1)若BP=3,求AD
(2)设BP=x,DE=y,求y关于x的函数解析式
(3)当BP为多少时,以Q、D、E为顶点的三角形与△ABC相似?
如图,在平面直角坐标系内,已知点A(0,6)点B(8,0),点P由点A开始在线段AO上以1cm/s的速度运动,点Q由B开始在线段BA上以2cm/s的速度运动,设P,Q运动的时间为t秒。
1.求直线AB的解析式
2.当t为何值时,三角形APQ与三角形AOB相似??
3.当t为何值时,三角形APQ的面积为五分之二十四个单位面积
解:(1)B(0,4),OB=4,OA=3,OC=3,
直线解析式为:y=-43x+4,
抛物线的解析式为:y=x2-4x+3;
(2)(2)若⊙P与直线AB及x轴都相切,
则点P在∠BAO或它的外角的平分线所在的直线上.
①设∠BAO的外角平分线交y轴于D,过D作DH⊥AB于H,
则DH=DO=m,BD=4-m,AH=AO=3,BH=5-3=2
在Rt△BHD中,BD2=BH2+DH2
即(4-m)2=m2+22,
解得:m=32
即D(0,1.5)
则直线AD的解析式为:y=-12x+32,
将其与抛物线的解析式y=x2-4x+3联立解得:{x1=3;y1=0,{x2=12;y2=54
即P(12,54)
②设∠BAO外角的平分线交y轴于G,
则AG⊥AD于A,则△DOA∽△AOG,故OG=2OA=6
即G(0,-6)直线DG解析式为:y=2x-6
将其与抛物线的解析式y=x2-4x+3联立解得:{x1=3;y1=0
∴存在点P(12,54),使⊙P与直线AB及x轴都相切
(3)过P作PM⊥x轴于M,显然PM是Rt△OQE的中位线,即OE=2OM=2|x|,QE=2PM
点P在抛物线x2-4x+3上,则P(x,x2-4x+3),QE=2PM=2|x2-4x+3|
①当x<0时,x2-4x+3>0,OE=-2x,y=2[-2x+2(x2-4x+3)]=4x2-20x+12
②当1<x<3时,x2-4x+3<0,y=2[2x-2(x2-4x+3)]=-4x2+20x-12
③当0<x<1或x>3时,x2-4x+3>0,y=2[2x+2(x2-4x+3)]=4x2-12x+12
要难题是吧 给以一本书 奥术3+1
在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.
(1)求b,c的值及顶点D的坐标
(2) 探索:
1.在直线AB下方的抛物线上存在一动点F,连接AF,是否存在一点F,使FA⊥AB,若存在,请你直接写出点F的坐标;若不存在,说明理由.
2.连接AF、BF,是否存在一点F使△ABF的面积?若存在,请你求出点F的坐标;若不存在,说明理由.
(3)在(2)的第2.面积条件下过点F做X轴的垂线交直线AB与点E,在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请你直接写出所有点P的坐标;若不存在,说明理由.
在平面直角坐标系中,点B在直线y=-2x上,过点B作x轴的垂线,垂足为A,AB=10,若抛物线y=-1/6x^2+bx+c过点O、A两点问题补充:
(1)求该抛物线的解析式
(2)若点A与点C关于直线y=-2x对称,判断点C是否在该抛物线上,并说明理由
(3)在(2)的抛物线上是否存在点Q(除A点外),使得△OBQ是直角三角形?若存在。求出点Q的坐标;若不存在,请说明理由。
这个很好办吖~去百度上去搜各个市的中考题。都有的。一题就满足你的要求了~
小明吃了一个苹果,小军吃了两个苹果,求太阳的质量
初三数学压轴题及
一、图形运动产生的面积问题
知识点睛
研究_基本_图形
分析运动状态:
①由起点、终点确定t的范围;
②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.
分段画图,选择适当方法表达面积.
二、精讲精练
已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点与点重合,点N到达点时运动终止),过点M、N分别作边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为秒.
(1)线段MN在运动的过程中,为何值时,四边形MNQP恰为矩形?并求出该矩形的面积.
(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间变化的函数关系式,并写出自变量t的取值范围.
1题图 2题图
如图,等腰梯形ABCD中,AB∥CD,AB=, CD=,高CE=,对角线AC、BD交于点H.平行于线段BD的两条直线MN、RQ同时从点A出发,沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G,当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的面积为,被直线RQ扫过的面积为,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.
(1)填空:∠AHB=____________;AC=_____________;
(2)若,求x.
如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R.设点Q的运动时间为t(s),△PQ'R与△PAR重叠部分的面积为S(cm2).
(1)t为何值时,点Q' 恰好落在AB上?
(2)求S与t的函数关系式,并写出t的取值范围.
(3)S能否为?若能,求出此时t的值;
若不能,请说明理由.
如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形APDE和梯形BCFQ重叠部分的面积为Scm2.
(1)当t=_____s时,点P与点Q重合;
(2)当t=_____s时,点D在QF上;
(3)当点P在Q,B两点之间(不包括Q,B两点)时,
求S与t之间的函数关系式.
如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.
(1)填空:点B的坐标为________,点C的坐标为_________.
(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.
如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.
(1)求M,N的坐标.
(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围.
二、二次函数中的存在性问题
一、知识点睛
解决“二次函数中存在性问题”的基本步骤:
①画图分析.研究确定图形,先画图解决其中一种情形.
②分类讨论.先验证①的结果是否合理,再找其他分类,类比种情形求解.
③验证取舍.结合点的运动范围,画图或推理,对结果取舍.
二、精讲精练
如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.
抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.
(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;
(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.
如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,
OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.
(1)若抛物线经过A、B两点,求该抛物线的解析式:______________;
(2)若点M是直线AB上方抛物线上的一个动点,
作MN⊥x轴于点N.是否存在点M,使△AMN
与△ACD相似?若存在,求出点M的坐标;
若不存在,说明理由.
已知抛物线经过A、B、C三点,点P(1,k)在直线BC:y=x3上,若点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的四边形为平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.
抛物线与y轴交于点C,与直线y=x交于A(-2,-2)、B(2,2)两点.如图,线段MN在直线AB上移动,且,若点M的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以P、M、Q、N为顶点的四边形否为平行四边形?若能,请求出m的值;若不能,请说明理由.
三、二次函数与几何综合
一、知识点睛
“二次函数与几何综合”思考流程:
整合信息时,下面两点可为我们提供便利:
①研究函数表达式.二次函数关注四点一线,一次函数关注k、b;
②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息.
二、精讲精练
如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的解析式.
(2)在抛物线的对称轴上是否存在点M,使|MA-MB|?
若存在,求出点M的坐标;若不存在,请说明理由.
如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.
(1)求抛物线的解析式;
(2)点E在抛物线的对称轴上,点F在抛物线上,
且以B、A、F、E四点为顶点的四边形为平行四边形,求点的坐标.
如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,
点P的横坐标为x,求l关于x的函数关系式,并求出l的值.
已知,抛物线经过A(-1,0),C(2,)两点,
与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=,求y2与x的函数关系式,
并直接写出自变量x的取值范围.
已知抛物线的对称轴为直线,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).
(1)求抛物线的解析式;
(2)若点P在抛物线上运动(点P异于点A),
①如图1,当△PBC的面积与△ABC的面积相等时,求点P的坐标;
②如图2,当∠PCB =∠BCA时,求直线CP的解析式.
四、中考数学压轴题专项训练
1.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0 △OPQ与直角梯形OABC重叠部分的面积为S. (1)求经过O,A,B三点的抛物线解析式. (2)求S与t的函数关系式. (3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由. 2.如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点. (1)求抛物线的解析式及点D的坐标. (2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标. (3)过点P作直线CD的垂线,垂足为Q.若将△CPQ沿CP翻折,点Q的对应点为Q′,是否存在点P,使点Q′恰好在x轴上?若存在,求出此时点P的坐标;若不存在,请说明理由. 3.(11分)如图,已知直线与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E. (1)请直接写出C,D两点的坐标,并求出抛物线的解析式; (2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围; (3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积. 4.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D. (1)求抛物线的解析式; (2)点K为线段AB上一动点,过点K作x轴的垂线,交直 线CD于点H,交抛物线于点G,求线段HG长度的值; (3)在直线l上取点M,在抛物线上取点N,使以A,C,M, N为顶点的四边形是平行四边形,求点N的坐标. 5.(11分)如图,在平面直角坐标系中,直线与 抛物线交于A,B两点,点A在x轴上,点B的横坐标为-8. (1)求抛物线的解析式. (2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E. ①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的值. ②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动, 正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时, 直接写出对应的点P的坐标. 6.(11分)如图1,点A为抛物线C1:的顶点,点B的坐标为 (1,0),直线AB交抛物线C1于另一点C. (1)求点C的坐标; (2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于点F,交抛物线C1于点G,若FG:DE=4:3,求a的值; (3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为P,交x轴负半轴于点M,交射线AB于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值. 附:参 一、图形运动产生的面积问题 1. (1)当t=时,四边形MNQP恰为矩形.此时,该矩形的面积为平方厘米. (2) 当0<t≤1时,;当1<t≤2时,; 当2<t<3时, 2.(1)90°;4 (2)x=2. 3.(1)当t=时,点Q' 恰好落在AB上. (2)当0<t≤时,;当<t≤6时, (3)由(2)问可得,当0<t≤时, ; 当<t≤6时,; 解得,或,此时. 4.(1)1 (2)(3)当1<t≤时,; 当<t<2时,. 5.(1)(﹣1,3),(﹣3,2) (2)当0<t≤时,;当<t≤1时,; 当1<t≤时,. 6.(1)M(4,2) N(6,0)(2)当0≤t≤1时,; 当1<t≤4时,; 当4<t≤5时,; 当5<t≤6时,; 当6<t≤7时, 二、二次函数中的存在性问题 1.解:由题意,设OA=m,则OB=2m;当∠BAP=90°时, △BAP∽△AOB或△BAP∽△BOA; 若△BAP∽△AOB,如图1, 可知△PMA∽△AOB,相似比为2:1;则P1(5m,2m), 代入,可知, 若△BAP∽△BOA,如图2, 可知△PMA∽△AOB,相似比为1:2;则P2(2m,), 代入,可知, 当∠ABP=90°时,△ABP∽△AOB或△ABP∽△BOA; 若△ABP∽△AOB,如图3, 可知△PMB∽△BOA,相似比为2:1;则P3(4m,4m), 代入,可知, 若△ABP∽△BOA,如图4, 可知△PMB∽△BOA,相似比为1:2;则P4(m,), 代入,可知, 2.解:(1)由抛物线解析式可得B点坐标(1,3). 要求直线BQ的函数解析式,只需求得点Q坐标即可,即求CQ长度. 过点D作DG⊥x轴于点G,过点D作DF⊥QP于点F. 则可证△DCG≌△DEF.则DG=DF,∴矩形DGQF为正方形. 则∠DQG=45°,则△BCQ为等腰直角三角形.∴CQ=BC=3,此时,Q点坐标为(4,0) 可得BQ解析式为y=-x+4. (2)要求P点坐标,只需求得点Q坐标,然后根据横坐标相同来求点P坐标即可. 而题目当中没有说明∠DCE=30°还是∠DCE=60°,所以分两种情况来讨论. 当∠DCE=30°时, a)过点D作DH⊥x轴于点H,过点D作DK⊥QP于点K. 则可证△DCH∽△DEK.则, 在矩形DHQK中,DK=HQ,则. 在Rt△DHQ中,∠DQC=60°.则在Rt△BCQ中,∴CQ=,此时,Q点坐标为(1+,0) 则P点横坐标为1+.代入可得纵坐标.∴P(1+,). b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称. 由对称性可得此时点P坐标为(1-,) 当∠DCE=60°时, 过点D作DM⊥x轴于点M,过点D作DN⊥QP于点N. 则可证△DCM∽△DEN.则, 在矩形DMQN中,DN=MQ,则. 在Rt△DMQ中,∠DQM=30°.则在Rt△BCQ中, ∴CQ=BC=,此时,Q点坐标为(1+,0) 则P点横坐标为1+.代入可得纵坐标.∴P(1+,). b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称. 由对称性可得此时点P坐标为(1-,) 综上所述,P点坐标为(1+,),(1-,),(1+,)或(1-,). 3.解:(1)∵AB=BC=10,OB=8 ∴在Rt△OAB中,OA=6 ∴ A(6,0) 将A(6,0),B(0,-8)代入抛物线表达式,得, (2)存在: 如果△AMN与△ACD相似,则或 设M(0 设点M在x轴下方的抛物线上,如图1所示: 当时,, 即∴∴ 如图2验证一下 当时,,即 ∴(舍) 2)如果点M在x轴上方的抛物线上: 当时,,即 ∴ ∴M 此时, ∴ ∴△AMN∽△ACD ∴M满足要求 当时,,即 ∴m=10(舍) 综上M1,M2 4.解:满足条件坐标为: 思路分析:A、M、N、P四点中点A、点P为顶点,则AP可为平行四边形边、对角线; (1)如图,当AP为平行四边形边时,平移AP; ∵点A、P纵坐标为2 ∴点M、N纵坐标为2; ∵点M的纵坐标为0 ∴点N的纵坐标为2或-2 ①当点N的纵坐标为2时 解: 得 又∵点A、P横坐标为2 ∴点M的坐标为: 、 ②当点N的纵坐标为-2时 解: 得 又∵点A、P横坐标为2 ∴点M的坐标为: 、 (2)当AP为平行四边形边对角线时; 设M5(m,0) MN一定过AP的中点(0,-1) 则N5(-m,-2),N5在抛物线上 ∴ (负值不符合题意,舍去) ∴ ∴ 综上所述: 符合条件点P的坐标为: 5.解:分析题意,可得:MP∥NQ,若以P、M、N、Q为顶点的四边形为平行四边形,只需MP=NQ即可。由题知:,,, 故只需表达MP、NQ即可.表达分下列四种情况: ①如图1,,,令PM=QN, 解得:(舍去),; ②如图2,,,令PM=QN, 解得:(舍去),; ③如图3,,,令PM=QN, 解得:,(舍去); ④如图4,,,令PM=QN, 解得:,(舍去); 综上,m的值为、、、. 三、二次函数与几何综合 解:(1)令x=0,则y=4, ∴点C的坐标为(0,4), ∵BC∥x轴,∴点B,C关于对称轴对称, 又∵抛物线y=ax2-5ax+4的对称轴是直线,即直线 ∴点B的坐标为(5,4),∴AC=BC=5, 在Rt△ACO中,OA=,∴点A的坐标为A(,0), ∵抛物线y=ax2-5ax+4经过点A,∴9a+15a+4=0,解得, ∴抛物线的解析式是 (2)存在,M(,) 理由:∵B,C关于对称轴对称,∴MB=MC,∴; ∴当点M在直线AC上时,值, 设直线AC的解析式为,则,解得,∴ 令,则,∴M(,) 2、解:(1)∵抛物线过点B(,0), ∴a+2a-b=0,∴b=3a,∴ 令y=0,则x=或x=3,∴A(3,0),∴OA=3, 令x=0,则y=-3a,∴C(0,a),∴OC=3a ∵D为抛物线的顶点,∴D(1,4a) 过点D作DM⊥y轴于点M,则∠AOC=∠CMD=90°, 又∵∠ACD+∠MCD=∠AOC+∠1,∠ACD=∠AOC=90° ∴∠MCD=∠1 ,∴△AOC∽△CMD,∴, ∵D(1,4a),∴DM=1,OM=4a,∴CM=a ∴,∴,∵a>0,∴a=1 ∴抛物线的解析式为: (2)当AB为平行四边形的边时,则BA∥EF,并且EF= BA =4 由于对称轴为直线x=1,∴点E的横坐标为1,∴点F的横坐标为5或者3 将x=5代入得y=12,∴F(5,12).将x=-3代入得y=12,∴F(-3,12). 当AB为平行四边形的对角线时,点F即为点D, ∴F(1,4). 综上所述,点F的坐标为(5,12),(3,12)或(1,4). 3、解:(1)对于,当y=0,x=2;当x=8时,y=. ∴A点坐标为(2,0),B点坐标为 由抛物线经过A、B两点,得 解得 (2)设直线与y轴交于点M 当x=0时,y=. ∴OM=. ∵点A的坐标为(2,0),∴OA=2,∴AM= ∴OM:OA:AM=3:4:5. 由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM ∽△PED. ∴DE:PE:PD=3:4:5 ∵点P是直线AB上方的抛物线上一动点, ∴PD= ∴由题意知: 4、解:(1) ∵抛物线y1=ax22axb经过A(1,0),C(0,)两点, ∴,∴,∴抛物线的解析式为y1= x2x (2)解法一:过点M作MN⊥AB交AB于点N,连接AM 由y1= x2x可知顶点M(1,2) ,A(1,0),B(3,0),N(1,0) ∴AB=4,MN=BN=AN=2,AM=MB=. ∴△AMN和△BMN为等腰直角三角形. ∵∠MPA+∠QPB=∠MPA +∠PMA=135° ∴∠QPB=∠PMA 又∵∠QBP=∠PAM=45°∴△QPB∽△PMA ∴ 将AM=,AP=x+1,BP=3-x,BQ=代入, 可得,即. ∵点P为线段OB上一动点 (不与点B重合)∴0x<3 则y2与x的函数关系式为y2=x2x(0x<3) 解法二: 过点M作MN⊥AB交AB于点N. 由y1= x2x易得M(1,2),N(1,0),A(1,0),B(3,0), ∴AB=4,MN=BN=2,MB=2,MBN=45. 根据勾股定理有BM 2BN 2=PM 2PN 2. ∴…①, 又MPQ=45=MBP,∴△MPQ∽△MBP,∴=y22 由、得y2=x2x. ∵0x<3,∴y2与x的函数关系式为y2=x2x(0x<3) 5、解:(1)由题意,得,解得 ∴抛物线的解析式为. (2)①令,解得 ∴B(3, 0) 则直线BC的解析式为 当点P在x轴上方时,如图1, 过点A作直线BC的平行线交抛物线于点P,∴设直线AP的解析式为, ∵直线AP过点A(1,0),∴直线AP的解析式为,交y轴于点. 解方程组,得 ∴点 当点P在x轴下方时,如图1, 根据点,可知需把直线BC向下平移2个单位,此时交抛物线于点, 得直线的解析式为, 解方程组,得 ∴综上所述,点P的坐标为: ,②过点B作AB的垂线,交CP于点F.如图2,∵ ∴OB=OC,∴∠OCB=∠OBC=45° ∴∠CBF=∠ABC=45° 又∵∠PCB=∠BCA,BC=BC ∴△ACB≌△FCB ∴BF=BA=2,则点F(3,-2)又∵CP过点F,点C ∴直线CP的解析式为. 四、中考数学压轴题专项训练 1.(1); (2); (3)t=1或2. 2.(1),; (2); (3)存在,点P的坐标为. 3.(1),; (2); (3)15. 4.(1); (2); (3). 5.(1); (2)①,当时,; ②. 6.(1); (2); (3). 说明一下少了一个,也就是倒数第二行的舍去应添加上,有三个t ;t=4/3是!!! (1)MC//AP MC/AP=MQ/PQ=(PM-PQ)/PQ=PM/PQ-1=2/PQ-1 PQ=2/(MC/AP+1)=2AP/(MC+AP) AP=OA-OP=4-(1+BC-MB)=1+t MC=BC-MB=2-t PQ=(2+2t)/3 AN=OA-ON=4-3t S=1/2ANPQ=1/2(4-3t)(2+2t)/3=(4/3-t)(1+t) 所以当t=1/6时,S取到值49/36 (2)△AMQ是等腰三角形 ①AQ=NQ AP=NP 1+t=OP-ON=1+BC-MB-3t t=2-t-3t t=2/5 ②AQ=AN APAC/(AP+MC)=4-3t (1+t)根号13/3=4-3t (根号13/3+3)t=4-根号13/3 t=(4-根号13/3)/(根号13/3+3)=(12-根号13)/(根号13+9)(12-根号13)/(根号13+9) ③NQ=AN Q(3-t,(2+2t)/3) N(3t,0) 根号[(4t-3)^2+(2/3+2t/3)^2]=4-3t 16t^2-24t+9+4/9+8t/9+4t^2/9=16-24t+9t^2 7t^2+4t^2/9+8t/9+4/9-7=0 67t^2+8t-59=0 (t+1)(67t-59)=0 t=59/67 所以当t=2/5或(12-根号13)/(根号13+9)或59/67时,△AMQ为等腰三角形 根号13/3(1+t)BM=t, CM=2-t, 延长CB至点D,连接AD使AD垂直于BC,可知BD=1,AD=2,于是tan∠ACB=AD/CD=2/3 于是MQ/CM=2/3,即MQ=2/3(2-t) AP=1+t △AMQ的面积为:S=1/2MQAP=1/22/3(2-t)(1+t)=-1/3(t-2)(t+1) 当t=1/2时,S取面积为3/4. (2) 由题意可知,当AQ=MQ时,△AMQ为等腰三角形。 AQ^2=AP^2+PQ^2=13/9(1+t)^2 AQ=根号13/3(1+t) 根号13/3(1+t)=2/3(2-t), 解得 t=(4-根号13)/(2+根号13) 您说的S是什么的面积?初三数学压轴题
版权声明:本文内容由互联网用户自发贡献。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com,本站将立刻删除。
下一篇