黎曼几何创立的艰难(黎曼几何实际意义)
- 游戏资讯
- 2025-01-03 10:22
- 1
今天天天来给大家分享一些关于黎曼几何实际意义方面的知识吧,希望大家会喜欢哦
黎曼几何创立的艰难(黎曼几何实际意义)
黎曼几何创立的艰难(黎曼几何实际意义)
1、德国数学家(G.F.)B.黎曼在19世纪中期所提出的几何学理论。
2、1854年,他在格丁根大学发表的就职演说,题目是《论作为几何学基础的设》,可以说是黎曼几何学的发凡。
3、从数学上讲,他发展了空间的概念,首先认识到几何学中所研究的对象是一种多重广延量,其中的点可以用n个实数作为坐标来描述,即现代的微分流形的原始形式,为用抽象空间描述自然现象打下了基础。
4、更进一步,他认为,通常所说的几何学只是在当时已知测量范围之内的几何学,如果超出了这个范围,或者是到更细层次的范围里面,空间是否还是欧几里得的则是一个需要验证的问题,需要靠物理学发展的结果来决定。
5、他认为这种空间(也就是流形)上的几何学应该是基于无限邻近点之间的距离。
6、在无限小的意义下,这种距离仍然满足勾股定理。
7、这样,他就提出了黎曼度量的概念。
8、这个思想发源于C.F.高斯。
9、但是黎曼提出了更一般化的观点。
10、在欧几里得几何中,邻近点的距离平方是这确定了欧几里得几何。
11、但是在一般曲线坐标下,则应,这是相当特殊的一组函数。
12、如果是一般的函数,又(gij)仍构成正定对称阵,那么出发,也可以定义一种几何学,这便是黎曼几何学。
13、由于在每一点的周围,都可以选取坐标使得在这点成立,所以在非常小的区域里面勾股定理近似成立。
14、但在大一点的范围里一般就和欧几里得几何学有很大的区别了。
本文到这结束,希望上面文章对大家有所帮助。
版权声明:本文内容由互联网用户自发贡献。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com,本站将立刻删除。
下一篇