首页 > 游戏资讯 >  > 

三角形的重心_三角形的重心比例二比一

三角形的重心

三角形的重心是指三角形三条边中线的交点。当几何体为匀质物体时,重心与形心重合。三角形重心和三角形3个顶点组成的3个三角形面积相等;重心到三角形3个顶点距离的平方和最小;重心到顶点的距离与重心到对边中点的距离之比为2:1;重心是三角形内到三边距离之积的点。

三角形的重心_三角形的重心比例二比一三角形的重心_三角形的重心比例二比一


三角形的重心_三角形的重心比例二比一


三角形是由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。常见的三角形按边分有普通三角形、等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

三角形的性质有:在平面上,三角形的内角和等于180°,三角形的外角和等于360°;一个三角形的三个内角中最少有两个锐角;在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度;三角形任意两边之和大于第三边,任意两边之小于第三边。

三角形五心定律

三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定理是指三角形重心定理、外心定理、垂心定理、内心定理,以及旁心定理的总称。

三角形五心口诀

1.重心记忆口诀

三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,

重心分割中线段,数段之比听分晓,长短之比二比一,灵活运用掌握好。

重心:是指三角形的三条中线的交点

2.外心记忆口诀

三角形有六元素,三个内角有三边,作三边的中垂线,三线相交共一点,

此点定义为外心,用它可作外接圆,内心外心莫记混,内切外接是关键。

外心:是指三角形三条边的垂直平分线也称中垂线的相交点。

3.垂心记忆口诀

角形上作三高,三高必于垂心交,高线分割三角形,出现直角三对整,

直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清。

垂心:三角形的三条高线的交点叫做三角形的垂心。

4.内心记忆口诀

三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源,

点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然。

内心:三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心。

三角形的重心是什么?

重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1,重心和三角形3个顶点组成的3个三角形面积相等,重心到三角形3个顶点距离的平方和最小。

三角形重心是三角形三中线的交点。当几何体为匀质物体且重力场均匀时,重心与该形中心重合。

扩展资料:

证明一

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

例:已知:△ABC,E、F是AB,AC的中点。EC、FB交于G。

求证:EG=1/2CG

证明:过E作EH∥BF交AC于H。

∵AE=BE,EH//BF

∴AH=HF=1/2AF(平行线分线段成比例定理)

又∵ AF=CF

∴HF=1/2CF

∴HF:CF=1/2

∵EH∥BF

∴EG:CG=HF:CF=1/2

∴EG=1/2CG

方法二 连接EF

利用三角形相似

求证:EG=1/2CG 即证明EF=1/2BC

利用中位线可证明EF=1/2BC利用中位线可证明EF=1/2BC

2、重心和三角形3个顶点组成的3个三角形面积相等。

证明方法:

在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线。根据重心性质知:

OA'=1/3AA'

OB'=1/3BB'

OC'=1/3CC'

过O,A分别作a边上高OH',AH

可知OH'=1/3AH

则,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC

同理可证S△AOC=1/3S△ABC

S△AOB=1/3S△ABC

所以,S△BOC=S△AOC=S△AOB

三角形的重心怎么求

三角形重心是三角形三边中线的交点.

根据重心的性质,三边中线必交于一点.

所以作三角形任意两边的中线,其交点就是此三角形的重心.

1、重心到顶点的距离与重心到对边中点的距离之比为2:1.

证明一

三角形ABC,E、F是AB,AC的中点.EC、FB交于G.

证明:过E作EH平行BF.

∵AE=BE且EH//BF

∴AH=HF=1/2AF(中位线定理)

又∵ AF=CF

∴HF=1/2CF

∴EG=1/2CG(⊿CFG∽⊿CHE)

2、重心和三角形3个顶点组成的3个三角形面积相等.

证明二

证明方法:

在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA1、BOB1、COC1分别为a、b、c边上的中线根据重心性质知,OA1=1/3AA1,OB1=1/3BB1,OC1=1/3CC1过O,A分别作a边上高H1,H可知OH1=1/3AH 则,S(△BOC)=1/2×h1a=1/2×1/3ha=1/3S(△ABC);同理可证S(△AOC)=1/3S(△ABC),S(△AOB)=1/3S(△ABC) 所以,S(△BOC)=S(△AOC)=S(△AOB)

3、重心到三角形3个顶点距离平方的和最小.(等边三角形)

证明方法:

设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x,y) 则该点到三顶点距离平方和为:(x1-x)^2+(y1-y)^2+(x2-x)^2+(y2-y)^2+(x3-x)^2+(y3-y)^2

=3x^2-2x(x1+x2+x3)+3y^2-2y(y1+y2+y3)+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2

=3(x-1/3(x1+x2+x3))^2+3(y-1/3(y1+y2+y3))^2+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2

显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时

上式取得最小值x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2

最终得出结论.

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,

即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);

空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(z1+z2+z3)/3

5、三角形内到三边距离之积的点.

6、在△ABC中,若MA向量+MB向量+MC向量=0(向量) ,则M点为△ABC的重心,反之也成立.

7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+向量OC)

8、相同高三角形面积比为底的比,相同底三角形面积比为高的比.

证明方法:

∵D为BC中点,

∴BD=CD,

又∵h△ABD=h△ACD,h△BOD=h△COD,

∴S△ABD=S△ACD,S△BOD=S△COD,

即S△AOF+S△BOF+S△BOD=S△AOE+S△COE+S△COD,S△BOD=S△COD,

∴S△AOF+S△BOF=S△AOE+S△COE.

同理,

∵E为AC中点,

∴S△AOF+S△BOF=S△BOD+S△COD.

∴S△AOE+S△COE=S△BOD+S△COD.

又∵S△BOF/S△BOD+S△COD=OF/OC,S△AOF/S△AOE+S△COE,

即S△BOF=S△AOF.

∴BF=AF,

∴CF为AB边上的中线,

即三角形的三条中线相交于一点.

三角形的重心如何求?

三角形的三条边上的中线交于一点,这点叫做三角形的重心。

三角形的三条边上的高交于一点,这点叫做三角形的垂心,。

三角形的三个内角的平分线交于一点,这点叫做三角形的内心。

三角形的三条边的垂直平分线交于一点,这点叫做三角形的外心,

正三角形的四心重合,也就是正三角形的中心。

三角形的重心

三角形的重心是三角形三条中线的交点。

当几何体为匀质物体时,重心与形心重合。锐角三角形以等边三角形为例,等边三角形的重心亦为垂心,即三角形三条高连线的交点。只有等边三角形的重心与垂心重合,其他三角形无此类情况。

三角形重心到顶点的距离与重心到对边中点的距离之比为2:1。重心和三角形3个顶点组成的3个三角形面积相等。

三角形重心的性质

在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3。

重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。 重心到三角形3个顶点距离的平方和最小。重心是三角形内到三边距离之积的点。

三角形的重心是什么

三角形的重心是三角形内所有三条中线的交点,也就是从三角形三个顶点分别作出并延长其对边的中线,三条中线的交点即为重心。重心在三角形内划分三个角形,其中每个角形的重心和整个三角形的重心位置相同。重心也是三角形的重要几何中心之一,具有一些重要的性质,如:重心到三角形三个顶点的距离相等,重心到三角形三条边的距离成比例,重心在中位线上。

三角形的重心是三条中线的交点,即三角形三个顶点与其对边中点连线所组成的三条直线的交点。重心是三角形的重要特征点之一,它离三角形的三个顶点的距离相等,可以方便地用来求三角形的面积和一些与面积有关的问题。

版权声明:本文内容由互联网用户自发贡献。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com,本站将立刻删除。